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ABSTRACT 

The regression discontinuity design (RDD) has the potential to yield findings with causal 
validity approaching that of the randomized controlled trial (RCT). However, Schochet (2008a) 
estimated that, on average, an RDD study of an education intervention would need to include three 
to four times as many schools or students as an RCT to produce impacts with the same level of 
statistical precision. We extend the work of Schochet by empirically assessing the effect on sample 
size requirements of accounting for selection of an optimal bandwidth and the adjustment for 
random misspecification error, both of which are needed to estimate consistent RDD impacts and 
control the Type I error rate. We used data from four previously published education studies 
covering more than 25,000 students in kindergarten to grade 9 in 24 states and 330 schools to 
calculate empirical estimates of the RDD design effect taking into account these additional factors. 
We find that an RDD study needs between 9 and 17 times as many schools or students as an RCT 
to produce an impact with the same level of statistical precision, and that the need for a large sample 
is driven primarily by bandwidth selection, not adjusting for random misspecification error. 
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I. INTRODUCTION 

The regression discontinuity design (RDD) can be used to estimate the impact of an 
intervention in cases in which a randomized controlled trial (RCT) is not feasible. (See Cook [2008] 
for a thorough account of the multidisciplinary history of RDD.) Under this design, individuals are 
selected to receive an intervention based on where they fall relative to a cutoff value on a continuous 
assignment variable. If the relationship between such a variable and the outcome is continuous in 
the absence of the intervention, then a discontinuity in the outcome-assignment variable relationship 
at the cutoff value can be interpreted as the impact of the intervention. Because the researcher 
observes the assignment mechanism, RDD is not as susceptible to omitted variable bias as other 
nonexperimental designs (for example, propensity score matching). This key advantage of RDD is 
reflected in the decision by the U.S. Department of Education’s What Works Clearinghouse to allow 
RDD studies to be classified in the same category as RCTs (U.S. Department of Education 2010). 

Although many RDD studies are conducted retrospectively using existing data, some use 
varying combinations of administrative data and data collected specifically for the study at hand. 
Researchers conducting a prospective RDD must decide how large their study needs to be to detect 
the smallest effect that would be considered meaningful. This type of statistical power analysis is 
frequently conducted in the design of RCTs. 

Schochet (2008a) provides a detailed illustration of a key source of the difference in the 
statistical variance of an RDD impact relative to an RCT impact, which we will refer to as the 
regression discontinuity design effect (RDDE). In short, the RDDE arises because estimation of 
unbiased RDD impacts requires regression adjustment for the assignment variable. Because the 
assignment variable is correlated with treatment status, including the assignment variable in the 
impact regression unavoidably reduces the statistical precision of the impact estimate. 

To bring attention to the main source of the RDDE, Schochet focused on the case of an RDD 
impact analysis that used all available data regardless of distance from the cutoff value and a linear 
functional form. In planning an RDD evaluation, however, researchers must also account for further 
erosion of statistical precision in the RDD impact due to the additional analytic steps necessary to 
estimate a credible impact. In particular, selection of an optimal bandwidth can reduce the sample 
size of the study.1 Furthermore, a lack of continuity in the assignment variable can reduce precision 
because standard errors must be inflated to account for what Lee and Card (2008) describe as 
random misspecification error, which occurs when multiple units share the same value of the 
assignment variable. This issue can also be described as a form of clustering—if multiple units share 
the same value of the assignment variable, then clusters are being assigned to treatment or control 
status, not individuals. As in a clustered RCT, this clustered assignment must be accounted for when 
calculating standard errors. 

These additional contributors to the RDDE depend on multiple characteristics of, and 
relationships among, the variables involved in estimating RDD impacts. These relationships are not 

                                                 
1 Most RDD studies estimate the relationship between the outcome and the assignment variable using either a 

linear regression within a bandwidth or a polynomial regression using all the data regardless of distance from the cutoff. 
We focus solely on the optimal bandwidth method because preliminary simulation results indicate that this method 
performs better than alternative approaches, in terms of having smaller bias and accurately estimated standard errors. We 
plan to report our simulation findings in future work. 
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generally known during the planning stages of an evaluation, yet they can greatly influence the 
statistical precision of RDD impacts and, therefore, the required sample size for an evaluation. 

Although this situation can be challenging to researchers designing prospective RDD 
evaluations, it is not without precedent. Researchers conducting clustered RCTs (for example, 
studies in which schools, not students, are randomly assigned to treatment and control groups) must 
contend with a design effect due to clustering that is also not known until data have been collected 
and analyzed. To help researchers anticipate the potential effect of clustering, the following papers 
report on the effects of clustering in varying contexts: Hedges and Hedberg (2007); Bloom et al. 
(2007); Schochet (2008b); and Deke et al. (2010). These papers report two key parameters—the 
intraclass correlation (ICC) and regression R2—for different combinations of outcomes and 
covariates for varying populations of interest. Researchers planning RCTs can use these parameter 
estimates to calculate the sample size needed to detect meaningful effect sizes. 

The purpose of this paper is to contribute to a similar literature for researchers planning 
prospective RDD studies in education in which an academic pre-test score is used as the assignment 
variable and a post-test score is used as the outcome. We estimate three quantities using data from 
past education studies: (1) the proportion of data excluded from RDD impact analyses using the 
Imbens and Kalyanaraman (2009) (hereafter, I&K) optimal bandwidth selection algorithm, (2) the 
increase in the variance due to the Lee and Card (2008) (hereafter, L&C) correction, and (3) the full 
RDDE. 

Our empirical strategy draws on data from four past education studies conducted for the 
Institute of Education Sciences (IES) covering more than 25,000 students in kindergarten to grade 9 
in 24 states and 330 schools. We use the pre-test scores from these studies as if they were the 
assignment variable in an RDD impact analysis and the post-test scores as if they were the 
outcomes. We conduct this analysis at three pseudo cutoff values of the pseudo assignment 
variables: the 25th, 50th, and 75th percentiles of the pre-test scores. Because we know that no 
intervention was actually allocated using these pre-tests (these pre-tests were administered as part of 
the earlier studies and were not used by the study authors to assign students to any intervention), our 
analysis is implicitly conducted under the null hypothesis of no RDD impacts. This is appropriate 
because statistical power analyses are typically conducted under the null hypothesis of no impacts. 

II. MINIMUM DETECTABLE EFFECT SIZES IN RDD EVALUATIONS 

The statistical power of an evaluation is often expressed in terms of a minimum detectable 
effect size (MDES). The MDES is the smallest effect a study could detect with high probability, 
measured relative to the standard deviation of the outcome variable (either for the study’s sample or 
a benchmark population of interest). Here we express the MDES for an RDD study as a function of 
the RDDE and the variance of an RCT impact that would be estimated using the same outcome and 
sample size, 

(1) MDES  T 1  ,df  T 1 1 df  * RDDE *Var(RCT _ impact)

  
 

where Var(RCT_impact) is the variance of an RCT impact estimate,  is the standard deviation of the 
outcome variable (either in the study sample or a benchmark population of interest), T-1(.) is the 
inverse of the t-distribution,  is the probability of a type 1 error,  is the probability of a type 2 
error (so 1- is power), and df is the number of degrees of freedom. 
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The RDDE is the ratio of the RDD impact variance to the RCT impact variance, holding 
sample size constant. Schochet (2008a) shows that in the case of an RDD analysis using a linear 
functional form and all available data, the RDDE reduces to: 

(2) RDDE 
1

1 2  

where  is the correlation between treatment status and the continuous assignment variable. We can 
then calculate the MDES for an RDD study by multiplying the MDES for an RCT of the same size 
by the square root of the RDDE. For an assignment variable following the uniform distribution and 
a cutoff at the median, Schochet showed that the RDDE is 4.0. If the assignment variable follows 
the normal distribution, the RDDE is 2.75. The effect on the MDES is the square root of the 
RDDE. (For example, in the case of the uniform distribution, the MDES for an RDD study is twice 
the MDES for an RCT with the same sample size.) 

In practice, the RDDE is likely to be even larger than shown in equation 2 due to selection of 
an optimal bandwidth and due to the L&C adjustment, where applicable. The effect of selecting an 
optimal bandwidth is straightforward—it reduces the sample size for the impact analysis. The effect 
of the L&C adjustment depends on the residual intraclass correlation coefficient (ICC), that is, the 
proportion of variation in the residual remaining after the outcome is regressed on the assignment 
variable that is between, rather than within, unique values of the assignment variable. The greater the 
ICC, the greater the RDDE, and hence, the more precision is lost when making the necessary L&C 
adjustment. 

III. DATA 

This study uses baseline and follow-up student-level test score data from four large-scale 
experimental studies that Mathematica conducted for IES. The data from these studies are available 
as restricted use files from IES. The four studies are as follows: 

 Evaluation of Reading Comprehension Interventions (James-Burdumy et al. 2010) 

 Impact Evaluation of Teacher Preparation Models (Constantine et al. 2009) 

 Evaluation of Mathematics Curricula (Agodini et al. 2009) 

 Evaluation of Educational Technology Interventions (Campuzano et al. 2009) 

See Table 1 for a brief description of each study, including the grades covered. 

Together, these studies yield 25 combinations of baseline and follow-up test scores covering a 
total of 25,000 students drawn from kindergarten to grade 9 in 24 states and 330 schools. (In 
accordance with the National Center for Education Statistics [NCES] publication policy, all student 
sample sizes are rounded to the nearest 10. State, district, and school sample sizes come from the 
published reports referenced above.) We analyzed one year of data for each of the studies, meaning 
that the baseline test was conducted at the beginning of the school year and the follow-up test was 
conducted at the end of the same school year. 
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Table 1.  Description of Data Sources 

Study Purpose of Study 
Student 
Grade(s) Student Outcome Measures 

Unit of 
Random 

Assignment 

Number 
of 

States 

Number 
of 

Districts

Number 
of 

Schools

Number 
of 

Students

Response 
Rate  

Pre-Test 

Response 
Rate 
Post-
Test 

Evaluation of 
Reading 
Comprehension 
Interventions (James-
Burdumy et al. 2010) 

Evaluates the impact of four 
interventions on fifth-grade 
reading achievement. 

5 Group Reading Assessment 
and Diagnostic Evaluation 
(GRADE); Educational Testing 
Service (ETS) Science Reading 
Comprehension Assessment; 
ETS Social Studies Reading 
Comprehension Assessment 

School 8 10 90 6,350 0.99 0.88 

Evaluation of Early 
Elementary School 
Mathematics 
Curricula (Agodini et 
al. 2009) 

Compares the effects of 
four different elementary 
math curricula on 
improving student math 
achievement. 

1, 2 Early Childhood Longitudinal 
Study Mathematics 
Assessment 

School 4 10 40 1,580 0.96 0.87 

Evaluation of Teacher 
Preparation Models 
(Constantine et al. 
2009) 

Examines the effect of 
different approaches to 
teacher preparation on 
teacher practice and 
student performance. 

K-5 Reading comprehension, 
vocabulary, math concepts 
and applications, and math 
computation subtests of the 
California Achievement 
Tests, Fifth Edition 

Student 7 20 60 2,490 0.97 0.90 

Evaluation of the 
Effectiveness of 
Reading and 
Mathematics 
Software Products 
(EERMSP) 
(Campuzano et al. 
2009) 

Study randomly assigned 
teachers to a treatment 
group that used a specified 
educational technology or a 
control group that used 
conventional teaching 
approaches. The study 
consisted of four sub-
studies of different 
interventions at different 
grade levels (see four rows 
below). 

- - - - - - - - - 

EERMSP Grade 1 - 1 Stanford Achievement Test 
(Version 10), Reading  
Test of Word Reading 
Efficiency 

Teacher 12 20 50 4,420 0.97 0.95 

EERMSP Grade 4 - 4 Stanford Achievement Test 
(Version 10), Reading 

Teacher 9 10 40 3,110 0.93 0.93 

EERMSP Grade 6 - 6 Stanford Achievement Test 
(Version 10), Math 

Teacher 7 10 30 4,260 0.96 0.89 

EERMSP Algebra - 8, 9 ETS End-of-Course Algebra 
Assessment 

Teacher 8 10 20 3,010 0.82 0.81 

 

Source: Randomized controlled trials previously completed by Mathematica for IES. 

Note: Student, district, and school sample sizes are rounded to the nearest 10 in accordance with NCES publication policy. State sample sizes are taken from the references 
listed in the first column. 
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For all studies, the pre- and post-tests were selected and administered by the study to ensure we 
would understand how these tests were used. In particular, we knew they were not used to assign 
students to receive an intervention. Thus, we knew that all our RDD impact analyses were being 
conducted under the null hypothesis of no impact. Table 2 describes each combination of pre- and 
post-test, providing a letter code for each case. These letter codes are used in subsequent tables. 

IV. METHODOLOGY 

For each combination of outcome and assignment variable described in Section III, we 
calculated RDD impacts and standard errors at the 25th, 50th, and 75th percentiles of the 
assignment variable using the following three approaches: 

 A linear functional form using all observations 

 A linear functional form using only observations within an optimal bandwidth 

 A linear functional form using only observations within an optimal bandwidth and the 
L&C adjustment 

In this section, we describe our approach to calculating RDD impacts, the I&K bandwidth 
selection algorithm, and the L&C adjustment for random misspecification error. 

A. Calculating RDD Impacts 

We follow Imbens and Lemieux (2008)2 and estimate impact regressions described in Equations 
3 and 4. The RDD impact is the difference between the constant terms: . The other 
terms in Equations 3 and 4 are the outcome (Y), the assignment variable (X), an index of students 
(i), an index of unique values of the assignment variable (j), random misspecification error3 (u), a 
student error term (ε), and the cutoff value of the assignment variable (c). We center X at c so that 
the intercept terms can be interpreted as the predicted average outcomes at the cutoff value of the 
assignment variable. These two equations are estimated separately. In estimating these equations, we 
use kernel weights associated with the I&K bandwidth selection algorithm (discussed in Section B). 

(3) ;  

(4) ;  

                                                 
2 Imbens and Lemieux assume that the treatment group consists of observations above the cutoff value of the 

assignment variable. We make the opposite assumption because we are focused on cases where low-achieving students 
are assigned to receive an intervention using a cutoff value on a continuous measure of achievement. 

3 This reflects the idea of a random misspecification error introduced by L&C. Imbens and Lemieux did not 
include this term. 

̂ RD  ̂ L ̂ R

Yij L  L Xij  u j   ij i , j  i , j|Xij  c 
Yij R  R X ij  u j   ij i , j  i , j|Xij  c 
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Table 2. Outcome and Assignment Variable Codes 

Code 
Grade 

Administered 
Outcome  

(measured post-intervention) 
Assignment Variable  

(measured pre-intervention) 

A 5 Group Reading Assessment and Diagnostic Evaluation  Group Reading Assessment and Diagnostic Evaluation  
B 5 ETS Science Reading Comprehension Assessment Group Reading Assessment and Diagnostic Evaluation 
C 5 ETS Science Reading Comprehension Assessment Test of Silent Contextual Reading Fluency 
D 5 ETS Social Studies Reading Comprehension Assessment Group Reading Assessment and Diagnostic Evaluation  
E 5 ETS Social Studies Reading Comprehension Assessment Test of Silent Contextual Reading Fluency 
F K-5 CAT-5: Vocabulary CAT-5: Vocabulary 
G K-5 CAT-5: Reading Comprehension CAT-5: Reading Comprehension 
H K-5 CAT-5: Math Computation CAT-5: Math Computation 
I K-5 CAT-5: Math Concepts and Applications CAT-5: Math Concepts and Applications 
J 1 ECLS Mathematics Assessment ECLS Mathematics Assessment 
K 9 ETS End-of-Course Algebra Assessment: Skills Score ETS End-of-Course Algebra Assessment: Skills Score 
L 9 ETS End-of-Course Algebra Assessment: Concepts Score ETS End-of-Course Algebra Assessment: Concepts Score 
M 9 ETS End-of-Course Algebra Assessment: Total Score ETS End-of-Course Algebra Assessment: Total Score 
N 9 ETS End-of-Course Algebra Assessment: Processes Score ETS End-of-Course Algebra Assessment: Processes Score 
O 1 SAT-10: Sounds and Letters Score SAT-10: Sounds and Letters Score 
P 1 SAT-10: Sentence Reading Score SAT-10: Sentence Reading Score 
Q 1 SAT-10: Word Reading Score SAT-10: Word Reading Score 
R 1 SAT-10: Total Reading Score SAT-10: Total Reading Score 
S 4 SAT-10: Reading Comprehension Score SAT-10: Reading Comprehension Score 
T 4 SAT-10: Reading Vocabulary Score SAT-10: Reading Vocabulary Score 
U 4 SAT-10: Total Reading Score SAT-10: Total Reading Score 
V 4 SAT-10: Work Study Skills Score SAT-10: Work Study Skills Score 
W 6 SAT-10: Problem Solving Score SAT-10: Problem Solving Score 
X 6 SAT-10: Total Math Score SAT-10: Total Math Score 
Y 6 SAT-10: Procedures Score SAT-10: Procedures Score 
 
Source: Randomized controlled trials previously completed by Mathematica for IES. 

CAT-5= California Achievement Test, Fifth Edition; ECLS = Early Childhood Longitudinal Study; ETS = Educational Testing Service; SAT-10 = Stanford Achievement Test-Version 10. 
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B. The I&K Bandwidth Selection Algorithm 

Equations 3 and 4 are estimated only for observations within an optimal bandwidth selected by 
the I&K algorithm. This algorithm is a data-driven approach to estimate the optimal bandwidth that 
minimizes the mean squared error (MSE) of the impact estimate. This optimal bandwidth balances 
the tradeoff between bias and variance. To be specific, let  denote the average effect of the 
treatment for students with assignment variable values equal to the cutoff value, and let  
denote the estimate of  using a bandwidth of . From I&K, the MSE of the impact estimate is: 

(5)  

Let  be the optimal bandwidth that minimizes this criterion: 

(6)  

Now define the asymptotic mean squared error (AMSE) as a function of the bandwidth: 

(7)  

where  and  are constants,  is the cutoff value,  is the sample size of the original data set, 

 and  are the right and left limits of the second derivative of the relationship between 

the outcome and the assignment variable at the cutoff,  and  are the right and left limits 
of the conditional variance of the outcome variable given the assignment variable at the cutoff, and 

 and  are the right and left limits of the density of the assignment variable at the cutoff. 
The first term in Equation 7 corresponds to the bias of the  estimator, and the second term 
corresponds to the variance. The bias of the  estimator is affected by the curvature (that is, 
the second derivative) of the relationship between the outcome and the assignment variable at the 
cutoff because the more curvature that exists in the data, the more bias will exist in a linear 
regression estimate at the cutoff. 

The I&K bandwidth, , is an estimate of , and equals: 

(8)  

where  is a constant that depends on the kernel used (we follow I&K and use  = 3.4375, 

which corresponds to the edge kernel),  is an estimate at the cutoff value of the conditional 

variance of the outcome variable given the assignment variable,  is an estimate of the density of 

the assignment variable at the cutoff,  and  are estimates of the limits of the second 

derivatives at the cutoff value from the right and left, respectively (that is,  and  


RD

̂
RD

(h)


RD

h

MSE(h)  E[(̂
RD

(h)
RD

)2].

h*

h*  argmin MSE(h).

AMSE(h)  C
1
h4 (m

(2) (c) m
(2) (c))2 

C
2

N h


 
2(c)

f (c)



2 (c)

f (c)







,

C
1

C
2  c N

m
(2) (c) m

(2) (c)

 
2(c)  

2(c)

f (c) f (c)

̂
RD

(h)

̂
RD

(h)

h opt h*

h
opt
 C

K


2̂ 2(c) / f̂ (c)

m̂
(2) (c) m̂

(2) (c) 2
 (r̂  r̂ )















1/5

N 1/5,

C
K

C
K

̂ 2(c)

f̂ (c)

m̂
(2) (c) m̂

(2) (c)

m̂
(2) (c) m̂

(2) (c)
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estimate the curvature of the data at the cutoff value), and  is what I&K call a 
“regularization term” that is a function of the previous four components. (All of these estimates are 
calculated as in I&K.) The regularization term addresses the problem that the curvature of the data 
could be spuriously underestimated when the sample size is low. It does this by imposing the 
conservative assumption that at least some curvature exists in the data. The size of the regularization 
term decreases with sample size, and nearly vanishes when the sample size is large. 

C. The L&C Adjustment for Random Misspecification Error 

The RDD is predicated on assignment to treatment and comparison status using a continuous 
variable. However, in practice, many variables are not truly continuous. For example, there are a 
finite number of unique values of a test score because there are a finite number of questions on a 
test. A more extreme example would be to assign students to treatment and comparison groups 
using letter grades (A through F)—a variable that is clearly not continuous, though it is ordinal. 

One way to interpret the contribution of L&C is as a solution to this problem of ambiguity in 
the continuity of assignment variables. L&C observe that a lack of continuity in an assignment 
variable can lead to random misspecification error and they suggest using clustered standard errors 
to protect against false inferences that might arise from this error. In this case, students are clustered 
within unique values of the assignment variable. This key insight by L&C reduces the need for 
subjective or arbitrary judgments about which assignment variables are continuous enough because 
the standard errors are simply inflated to protect against the consequences of a lack of continuity. 

Random misspecification error is reflected in Equations 3 and 4 by the term u. To account for 
the effects of this random error, we use two approaches suggested by L&C. The first approach 
assumes that, at the cutoff value of the assignment, variable u has the same sign and magnitude in 
Equation 3 as it does in Equation 4 (meaning the specification error is unrelated to treatment status). 
L&C refer to this case as identical specification errors. Following L&C, we adjust standard errors in 
this case using clustered standard errors. Specifically, we estimate Equations 3 and 4 using 
generalized estimating equations in which the cluster identification variable is the assignment 
variable itself. 

The second approach assumes that the values of u at the cutoff value from Equations 3 and 4 
can be different. L&C refer to these differences as independent specification errors. Assuming 
independent specification errors implies a more severe adjustment of standard errors than assuming 
identical specification errors. Following L&C, we adjust standard errors in this case by first 
estimating the same clustered impact variance as in the case of identical specification errors. We then 
add to that impact variance an additional term, which is described in Equations 12 and 13 of L&C. 

Specifically, the term is 2ˆ2 u , where 2ˆu  is a consistent estimator for the variance of ju , the 

misspecification error term in Equations 3 and 4.4 The square root of the sum of the clustered 

                                                 

4 2 2 2

1 1 1

1 1 1ˆˆ ( ) ( )
1

jnJ J

u j j j ij j
j j ij

n Y W Y Y
N N n

 
  

   
    where N is the total sample size, nj is the sample 

size within each of the j unique values of the assignment variable, Y is the outcome, W is the vector of covariates from 

Equations 3 and 4, and ̂  are the estimated coefficients from Equations 3 and 4. 

(r̂  r̂ )
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impact variance (assuming identical specification errors) and the additional term 2ˆ2 u  equals the 
impact standard error adjusted for independent specification errors. 

V. FINDINGS 

We begin our presentation of findings by examining the two underlying contributors to the 
ultimate RDDE: sample size reduction from the I&K bandwidth and clustering effects from the 
L&C adjustment. Next, we calculate a progression of standard errors for each data set, starting with 
RCT standard errors and ending with RDD standard errors that account for both I&K and L&C. 
This culminates in the RDDE for each data set. Finally, we consider the difference in sample sizes 
needed to detect desired effect sizes. 

A. Contributors to the RDDE 

In Tables 3 and 4, we examine the contributors to the RDDE that are the focus of this paper, 
namely the effect on sample size of the I&K bandwidth selection algorithm (Table 3) and the extent 
to which observations are clustered within unique values of the assignment value along with the ICC 
(Table 4). 

For the median outcome-assignment case in Table 3 (all discussion in this paragraph is focused 
on the median case), approximately half of all students are included in the I&K bandwidth regardless 
of the cutoff value. To see this, note that when the cutoff is at the 25th percentile of the assignment 
variable, 96 percent of observations below the cutoff and 31 percent of observations above the 
cutoff are included in the I&K bandwidth, which implies that 47 percent of all observations are 
included: 0.25*0.96 + 0.75*0.31 = 0.47. A similar calculation shows that 66 percent and 56 percent 
of all observations are included in the bandwidth when the cutoff is at the 50th and 75th percentiles 
of the assignment variable, respectively. 

Because the I&K algorithm selects a bandwidth equal in width on both sides of the cutoff, the 
proportion of observations above or below the cutoff value varies across cutoff values. Specifically, 
96 percent of observations below the cutoff are in the bandwidth when the cutoff is at the 25th 
percentile of the assignment variable, while 31 percent of observations above the cutoff are included 
in the bandwidth. When the cutoff value is at the 75th percentile of the assignment variable, 94 
percent of observations above the cutoff are in the bandwidth, while 43 percent of observations 
below the cutoff are in the bandwidth. When the cutoff value is at the median of the assignment 
variable, the proportion of observations above the cutoff that are in the bandwidth (72 percent) is 
closer to the proportion of observations below the cutoff that are in the bandwidth (59 percent). A 
consequence of this pattern is that, even when the cutoff value is located away from the median of 
the assignment variable, the bandwidth selection algorithm will tend to yield equally sized treatment 
and comparison groups. 

The L&C adjustment to standard errors will be more severe when there are fewer unique values 
of the assignment variable and when the residual ICC (after controlling for the assignment variable) 
is high. For all but one of the cases examined in Table 4, the number of unique values of the 
assignment variable is substantially lower than the total number of observations. For the median 
case, the ratio of total observations to unique values of the assignment variable is 82 (not shown in 
table). This suggests the potential for a severe clustering adjustment. However, the residual ICC is 
typically very low, particularly within the I&K bandwidth. Specifically, in the median case at the 
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Table 3.  Proportion of Observations Included in the Optimal Bandwidth, by Cutoff Value 

Outcome-
Assignment 
Code 

Cutoff: 25th Percentile Cutoff: 50th Percentile Cutoff: 75th Percentile 

Observations Below  Observations Above Observations Below  Observations Above Observations Below  Observations Above 

All Unique  All Unique All Unique  All Unique All Unique  All Unique 

A 0.97 0.63  0.25 0.22 0.52 0.27  0.48 0.31 0.36 0.26  0.93 0.75 
B 0.99 0.75  0.30 0.26 0.62 0.33  0.57 0.38 0.36 0.26  0.94 0.75 
C 0.90 0.75  0.46 0.27 0.56 0.28  0.72 0.28 0.35 0.33  0.98 0.94 
D 0.97 0.63  0.25 0.22 0.53 0.27  0.48 0.31 0.64 0.43  1.00 1.00 
E 0.85 0.65  0.33 0.22 0.62 0.30  0.80 0.32 0.43 0.36  0.97 0.88 
F 1.00 1.00  0.60 0.39 0.56 0.44  0.77 0.44 0.32 0.32  0.88 0.88 
G 1.00 1.00  0.78 0.50 0.54 0.40  0.78 0.41 0.30 0.29  0.75 0.78 
H 1.00 1.00  0.37 0.38 0.81 0.58  0.65 0.58 0.49 0.33  1.00 1.00 
I 0.75 0.88  0.46 0.30 0.42 0.27  0.56 0.28 0.44 0.41  1.00 1.00 
J 0.87 0.87  0.37 0.36 0.87 0.87  0.78 0.78 0.49 0.49  0.74 0.74 
K 1.00 1.00  0.57 0.35 0.64 0.55  0.85 0.58 0.48 0.47  1.00 0.83 
L 0.81 0.83  0.47 0.29 0.48 0.36  0.79 0.33 0.25 0.24  0.88 0.67 
M 1.00 1.00  0.84 0.62 0.47 0.29  0.48 0.29 0.52 0.43  0.98 0.71 
N 0.42 0.5  0.37 0.21 0.21 0.25  0.55 0.31 0.44 0.50  0.98 0.71 
O 0.72 0.88  0.34 0.64 0.93 0.75  0.60 0.76 0.33 0.13  0.32 0.44 
P 0.93 0.88  0.27 0.30 0.85 0.47  0.36 0.50 0.34 0.26  0.57 0.75 
Q 0.83 0.89  0.12 0.31 0.89 0.65  0.47 0.67 0.52 0.27  0.63 0.78 
R 0.98 0.91  0.26 0.44 0.77 0.42  0.31 0.43 0.37 0.19  0.43 0.57 
S 1.00 1.00  0.29 0.36 0.90 0.64  0.75 0.67 0.48 0.29  0.96 0.88 
T 0.96 0.60  0.13 0.25 0.87 0.50  0.58 0.55 0.65 0.33  1.00 1.00 
U 1.00 0.93  0.31 0.33 0.79 0.52  0.65 0.52 0.36 0.23  0.90 0.67 
V 0.90 0.60  0.09 0.20 0.92 0.40  0.57 0.40 0.54 0.27  0.81 0.60 
W 0.80 0.43  0.17 0.18 0.72 0.43  0.52 0.47 0.41 0.29  0.96 0.88 
X 0.97 0.75  0.29 0.26 0.73 0.48  0.59 0.48 0.31 0.24  0.87 0.67 
Y 0.95 0.60  0.26 0.25 0.90 0.60  0.78 0.64 0.90 0.67  1.00 1.00 
Median 0.96 0.87  0.31 0.30 0.72 0.43  0.59 0.44 0.43 0.29  0.94 0.78 

 
Source: Randomized controlled trials previously completed by Mathematica for IES. 

Note: Three assignment variable cutoff values are considered: the 25th, 50th, and 75th percentiles. For each cutoff, we report the proportion of all observations above (and 
below) the cutoff that are included in the I&K bandwidth. We also report the proportion of unique values of the assignment variable included in the bandwidth.  
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Table 4. Clustering Within Unique Values of the Assignment Variable 

  Number of  
Unique  

Assignment  
Variable  
Values  

Cutoff: 25th Percentile  Cutoff: 50th Percentile  Cutoff: 75th Percentile 

Outcome-
Assignment 
Code 

Student 
Sample  

Size 

ICC 
All 

Observations 

ICC 
Observations 
in Bandwidth  

ICC 
All 

Observations 

ICC 
Observations 
in Bandwidth  

ICC 
All 

Observations 

ICC 
Observations 
in Bandwidth 

A 5,170 31 0.0000 0.0000  0.0031 0.0000  0.0069 0.0000 
B 2,550 31 0.0055 0.0000  0.0071 0.0047  0.0068 0.0089 
C 2,540 64 0.0020 0.0000  0.0049 0.0003  0.0038 0.0018 
D 2,550 31 0.0000 0.0073  0.0012 0.0009  0.0020 0.0000 
E 2,550 67 0.0069 0.0048  0.0061 0.0033  0.0049 0.0049 
F 2,590 96 0.0000 0.0000  0.0000 0.0020  0.0000 0.0049 
G 2,560 91 0.0162 0.0103  0.0191 0.0089  0.0211 0.0123 
H 1,210 96 0.0086 0.0000  0.0000 0.0052  0.0000 0.0070 
I 2,520 99 0.0044 0.0016  0.0043 0.0061  0.0045 0.0091 
J 1,310 1,283 0.0000 0.0034  0.0000 0.0000  0.0000 0.0000 
K 1,930 23 0.0105 0.0103  0.0126 0.0087  0.0182 0.0019 
L 1,930 23 0.0130 0.0000  0.0115 0.0013  0.0123 0.0000 
M 1,930 28 0.0154 0.0022  0.0212 0.0025  0.0299 0.0000 
N 1,930 25 0.0182 0.0049  0.0155 0.0490  0.0168 0.0123 
O 3,490 33 0.0239 0.0000  0.0159 0.0000  0.0092 0.0000 
P 3,490 31 0.0026 0.0000  0.0054 0.0000  0.0080 0.0097 
Q 3,530 35 0.0267 0.0000  0.0378 0.0000  0.0440 0.0049 
R 3,340 91 0.0226 0.0000  0.0302 0.0004  0.0243 0.0025 
S 2,520 29 0.0173 0.0000  0.0013 0.0033  0.0024 0.0000 
T 2,430 21 0.0087 0.0000  0.0020 0.0000  0.0060 0.0004 
U 2,400 58 0.0082 0.0000  0.0000 0.0038  0.0074 0.0000 
V 2,490 20 0.0257 0.0000  0.0085 0.0000  0.0293 0.0037 
W 3,610 29 0.0000 0.0000  0.0017 0.0012  0.0044 0.0000 
X 3,560 46 0.0014 0.0000  0.0065 0.0008  0.0065 0.0000 
Y 3,550 21 0.0039 0.0000  0.0000 0.0000  0.0026 0.0000 
Median   0.0082 0.0000  0.0054 0.0012  0.0068 0.0018 

 
Source: Randomized controlled trials previously completed by Mathematica for IES. 

Note: Sample sizes are rounded to the nearest 10 in accordance with NCES publication policy. The ICCs shown in this table are calculated conditional on the assignment 
variable and the treatment indicator variable. 

ICC = intraclass correlation coefficient. 
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median cutoff value, the overall ICC is 0.0054 and the ICC within the bandwidth is even lower: 
0.0012 (a similar pattern can be seen for the other two cutoff values). The lower ICC within the 
bandwidth is consistent with the goal of the I&K algorithm, which is to reduce misspecification 
error. By way of comparison, the (unadjusted) ICCs for these test score outcomes due to students 
being clustered within schools range from 0.07 to 0.30 (not shown in table). 

Taken together, Tables 3 and 4 suggest that the primary source of the RDDE (beyond that 
identified in Schochet 2008a) will be the bandwidth selection algorithm, not the L&C adjustment. 

B. Standard Errors and the RDDE 

In Tables 5a, 5b, and 5c, we illustrate how standard errors increase as we move incrementally 
from an RCT to an RDD that both uses the I&K bandwidth selection algorithm and corrects 
standard errors for random misspecification error using the L&C adjustment. The three tables 
correspond to the three pseudo-cutoff values of the assignment variables. 

Consistent with what we saw in Tables 3 and 4, these tables show that the bandwidth selection 
algorithm, not the L&C adjustment, is the more common source of the RDDE. Of the 25 cases 
examined in Tables 5a, 5b, and 5c, the standard error increases in 24, 25, and 25 cases as we move 
from the column “RDD, All Observations, No Clustering” to the column “RDD, Observations in 
Bandwidth, No Clustering.” Meanwhile, the number of cases in which the standard error increases 
further due to the L&C adjustment is 7, 13, and 12 (moving from the column “RDD, Observations 
in Bandwidth, No Clustering,” to the column “RDD, Observations in Bandwidth, Clustering 
Independent”). Not surprisingly, the cases in which the standard error increases due to the L&C 
adjustment tend to be the cases with higher ICC values.5 

In Table 6, we present the full RDDE for every outcome-assignment case, three cutoff values, 
and both L&C adjustments (identical and independent). At the bottom of the table, we present the 
median RDDE across cases. (Recall throughout this discussion that the RDDE is defined in terms 
of the variance of the impact, whereas in Table 5, we focus on the standard error.) Whereas Schochet 
(2008a) found RDDE values no greater than 5.37 (Tables 4.2 and 4.3 of Schochet 2008a), we found 
RDDE median values ranging from 9.39 to 17.16, and in some individual cases they can be 
substantially larger than that. 

C. Sample Sizes Needed to Detect Effects 

In Table 7, we report the sample sizes needed to support an MDES of 0.25, 0.20, or 0.10 in 
RCT-based studies or in RDD-based studies with three different RDDE values (9, 14, and 17, to 
capture the range of median RDDE values shown in Table 6). Schochet (2008a) found that the 
sample size requirement to detect a given effect size is approximately three times larger for an RDD-
based study than for an RCT-based study. We found that accounting for the I&K bandwidth 
selection algorithm and L&C adjustment for random misspecification error results in a sample size 
requirement in the range of 9 to 17 times the size of an RCT (using Schochet’s assumption of an 
impact regression R2 of 0.50 and balanced treatment and comparison groups). 

                                                 
5 A noticeable exception is Case J, which has nearly as many unique values of the assignment variable as total 

observations and the ICC is nearly zero. Yet the L&C adjustment is very large in this case. We suspect that this is a 
degenerative case and that in this situation it would be best to forego the L&C adjustment. 
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Table 5a. Impact Standard Errors, RDD Cutoff at 25th Percentile 

Outcome-
Assignment 
Code 

RCT, All  
Observations,  
No Clustering 

RDD, All  
Observations,  
No Clustering 

RDD, Observations 
in Bandwidth,  
No Clustering 

RDD, Observations  
in Bandwidth,  

Clustering  
Identical 

RDD, Observations 
in Bandwidth,  

Clustering  
Independent 

A 0.022 0.062 0.087 0.087 0.087 

B 0.036 0.114 0.151 0.151 0.151 
C 0.042 0.122 0.175 0.175 0.175 
D 0.036 0.120 0.169 0.169 0.174 

E 0.043 0.131 0.165 0.194 0.198 

F 0.032 0.064 0.075 0.075 0.075 

G 0.035 0.072 0.083 0.096 0.135 

H 0.058 0.146 0.204 0.204 0.204 

I 0.033 0.061 0.085 0.103 0.121 
J 0.044 0.085 0.124 0.124 1.019 
K 0.049 0.084 0.105 0.148 0.203 

L 0.052 0.082 0.110 0.110 0.110 

M 0.046 0.114 0.108 0.108 0.117 

N 0.051 0.104 0.168 0.168 0.168 

O 0.033 0.241 0.281 0.281 0.281 

P 0.031 0.111 0.150 0.150 0.150 
Q 0.03 0.116 0.194 0.194 0.194 
R 0.027 0.121 0.150 0.150 0.150 

S 0.033 0.093 0.100 0.100 0.100 

T 0.034 0.188 0.255 0.255 0.255 

U 0.027 0.057 0.081 0.081 0.081 

V 0.035 0.253 0.274 0.274 0.274 

W 0.025 0.078 0.124 0.124 0.124 
X 0.024 0.045 0.063 0.063 0.063 
Y 0.029 0.084 0.112 0.112 0.112 

 
Source: Randomized controlled trials previously completed by Mathematica for IES. 
Note: In all cases, the outcomes were standardized to have mean 0 and standard deviation 1. The RCT impact 

standard errors are calculated using the formula 
1

NT


1

NC

, where N
T
 (the treatment group sample 

size) and N
C
 (the comparison group sample size) sum to the total sample sizes reported in Table 4, and N

T
 

constitutes 25 percent of the total sample (to make the balance between the treatment and comparison 
groups the same for the RCT calculations as it is for the RDD calculations). 

RCT = randomized controlled trial; RDD = regression discontinuity design. 
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Table 5b. Impact Standard Errors, RDD Cutoff at 50th Percentile 

Outcome-
Assignment 
Code 

RCT, All  
Observations,  
No Clustering 

RDD, All  
Observations,  
No Clustering 

RDD, Observations 
in Bandwidth,  
No Clustering 

RDD, Observations  
in Bandwidth,  

Clustering  
Identical 

RDD, Observations 
in Bandwidth,  

Clustering  
Independent 

A 0.019 0.036 0.066 0.066 0.066 

B 0.031 0.062 0.082 0.104 0.124 
C 0.036 0.057 0.089 0.089 0.089 
D 0.031 0.061 0.110 0.110 0.110 

E 0.037 0.060 0.090 0.090 0.098 

F 0.028 0.049 0.071 0.071 0.071 

G 0.030 0.049 0.076 0.083 0.126 

H 0.050 0.086 0.127 0.127 0.131 

I 0.029 0.049 0.092 0.113 0.138 
J 0.038 0.068 0.084 0.084 0.936 
K 0.043 0.078 0.128 0.169 0.217 

L 0.045 0.079 0.151 0.191 0.204 

M 0.040 0.072 0.132 0.132 0.151 

N 0.044 0.078 0.252 0.897 0.956 

O 0.029 0.086 0.109 0.109 0.109 

P 0.027 0.063 0.091 0.091 0.091 
Q 0.026 0.075 0.095 0.100 0.100 
R 0.023 0.062 0.093 0.093 0.093 

S 0.028 0.056 0.075 0.118 0.132 

T 0.029 0.072 0.097 0.097 0.097 

U 0.023 0.043 0.063 0.080 0.094 

V 0.030 0.057 0.076 0.076 0.076 

W 0.021 0.044 0.069 0.069 0.069 
X 0.020 0.039 0.057 0.057 0.057 
Y 0.025 0.048 0.061 0.061 0.061 

 
Source: Randomized controlled trials previously completed by Mathematica for IES. 
Note: In all cases the outcomes were standardized to have mean 0 and standard deviation 1. The RCT impact 

standard errors are calculated using the formula 
1

NT


1

NC

, where N
T
 (the treatment group sample 

size) and N
C
 (the comparison group sample size) sum to the total sample sizes reported in Table 4, and N

T
 

constitutes 50 percent of the total sample (to make the balance between the treatment and comparison 
groups the same for the RCT calculations as it is for the RDD calculations). 

RCT = randomized controlled trial; RDD = regression discontinuity design. 
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Table 5c. Impact Standard Errors, RDD Cutoff at 75th Percentile 

Outcome-
Assignment 
Code 

RCT, All  
Observations,  
No Clustering 

RDD, All  
Observations,  
No Clustering 

RDD, Observations 
in Bandwidth,  
No Clustering 

RDD, Observations  
in Bandwidth,  

Clustering  
Identical 

RDD, Observations 
in Bandwidth,  

Clustering  
Independent 

A 0.022 0.039 0.052 0.052 0.052 

B 0.036 0.071 0.091 0.137 0.162 
C 0.042 0.171 0.183 0.183 0.183 
D 0.036 0.067 0.075 0.075 0.075 

E 0.043 0.189 0.237 0.282 0.290 

F 0.032 0.107 0.147 0.159 0.177 

G 0.035 0.101 0.157 0.177 0.202 

H 0.058 0.109 0.152 0.152 0.185 

I 0.033 0.089 0.117 0.117 0.167 
J 0.044 0.068 0.101 0.101 0.872 
K 0.049 0.125 0.160 0.160 0.160 

L 0.052 0.191 0.382 0.382 0.382 

M 0.046 0.143 0.177 0.177 0.177 

N 0.051 0.130 0.165 0.165 0.213 

O 0.033 0.054 0.137 0.137 0.137 

P 0.031 0.058 0.095 0.095 0.120 
Q 0.030 0.049 0.083 0.083 0.096 
R 0.027 0.045 0.078 0.078 0.086 

S 0.033 0.051 0.081 0.081 0.081 

T 0.034 0.051 0.074 0.074 0.074 

U 0.027 0.046 0.067 0.067 0.067 

V 0.035 0.067 0.106 0.137 0.150 

W 0.025 0.040 0.062 0.062 0.062 
X 0.024 0.042 0.066 0.066 0.066 
Y 0.029 0.050 0.058 0.058 0.058 

 
Source: Randomized controlled trials previously completed by Mathematica for IES. 
Note: In all cases the outcomes were standardized to have mean 0 and standard deviation 1. The RCT impact 

standard errors are calculated using the formula 
1

NT


1

NC

, where N
T
 (the treatment group sample 

size) and N
C
 (the comparison group sample size) sum to the total sample sizes reported in Table 4, and N

T
 

constitutes 75 percent of the total sample (to make the balance between the treatment and comparison 
groups the same for the RCT calculations as it is for the RDD calculations). 

RCT = randomized controlled trial; RDD = regression discontinuity design. 

 



  Mathematica Policy Research 

16 

Table 6. Total RDD Design Effect Relative to RCT, by Cutoff Value 

Outcome-
Assignment Code 

25th Percentile  50th Percentile  75th Percentile 

Identical Independent  Identical Independent  Identical Independent 

A 15.64 15.64  12.07 12.07  5.59 5.59 

B 17.59 17.59  11.25 16.00  14.48 20.25 
C 17.36 17.36  6.11 6.11  18.98 18.98 

D 22.04 23.36  12.59 12.59  4.34 4.34 

E 20.35 21.20  5.92 7.02  43.01 45.48 

F 5.49 5.49  6.43 6.43  24.69 30.59 

G 7.52 14.88  7.65 17.64  25.57 33.31 

H 12.37 12.37  6.45 6.86  6.87 10.17 

I 9.74 13.44  15.18 22.64  12.57 25.61 
J 7.94 536.34  4.89 606.71  5.27 392.76 

K 9.12 17.16  15.45 25.47  10.66 10.66 

L 4.47 4.47  18.02 20.55  53.97 53.97 

M 5.51 6.47  10.89 14.25  14.81 14.81 

N 10.85 10.85  415.60 472.07  10.47 17.44 

O 72.51 72.51  14.13 14.13  17.24 17.24 

P 23.41 23.41  11.36 11.36  9.39 14.98 
Q 41.82 41.82  14.79 14.79  7.65 10.24 

R 30.86 30.86  16.35 16.35  8.35 10.15 

S 9.18 9.18  17.76 22.22  6.02 6.02 

T 56.25 56.25  11.19 11.19  4.74 4.74 

U 9.00 9.00  12.10 16.70  6.16 6.16 

V 61.29 61.29  6.42 6.42  15.32 18.37 

W 24.60 24.60  10.80 10.80  6.15 6.15 
X   6.89 6.89  8.12 8.12  7.56 7.56 

Y 14.92 14.92  5.95 5.95  4.00 4.00 

Median 14.92 17.16  11.25 14.13  9.39 14.81 
 
Source: Randomized controlled trials previously completed by Mathematica for IES. 
Note: The design effects are the ratios of the variance of RDD impacts to RCT impacts. RCT impacts are 

calculated using all available data and no clustering, whereas the RDD impacts are calculated using only 
students in the optimal bandwidth and a clustering adjustment to account for random misspecification 
error. Design effects are reported for two different clustering adjustments—one that assumes the 
specification error is unrelated to treatment status (identical) and one that assumes the opposite 
(independent). The last row reports the median of the design effects shown in each column. 

RCT = randomized controlled trial; RDD = regression discontinuity design. 
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Table 7. Sample Sizes Needed for RCT and RDD Studies 

Target MDES RCT Sample Size Assumed RDDE RDD Sample Size 

0.25 250 
9 2,250 

14 3,500 
17 4,250 

0.20 390 
9 3,530 

14 5,490 
17 6,660 

0.10 1,570 
9 14,110 

14 21,950 
17 26,660 

 
Source: Randomized controlled trials previously completed by Mathematica for IES. 

Note: Sample sizes are rounded to the nearest 10 in accordance with NCES publication policy. Sample sizes were 
selected to minimize the distance between the target MDES and the quantity 

fct ,,df  * RDDE * 1R2  1

NT
 1

NC

























, where fct is the sum of two critical values (corresponding to 

 =0.05 and  =0.20) from the T-distribution with df degrees of freedom; RDDE is the regression 
discontinuity design effect, R2 is the proportion of variance in the outcome explained by covariates (assumed 
to be 0.50), and N

T
 and N

C
 are the numbers of students in the treatment and comparison groups (assumed  to 

be equal). 

MDES = minimum detectable effect size; RCT = randomized controlled trial; RDD = regression discontinuity design; 
RDDE = regression discontinuity design effect. 
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VI. CONCLUSION 

Accounting for the correlation between the RDD assignment variable and treatment status, as 
shown in Schochet (2008a), results in an RDD impact variance between three and five times the size 
of an RCT impact variance with the same sample size. However, that design effect did not account 
for the sample loss associated with selecting an optimal bandwidth (as in I&K) or the effects of the 
L&C adjustment to standard errors that accounts for random misspecification bias. Using pre- and 
post-test score data from past education studies and supposing that the pre-test would be used as an 
RDD assignment variable with the post-test used as an outcome, we found that accounting for these 
necessary components of RDD impact analysis further increases the RDD impact variance to be 9 
to 17 times higher than an RCT impact variance in a study with the same sample size. In the context 
of retrospective RDD studies using large administrative data sets, this may not necessarily be a 
concern. But in the context of prospective studies that must collect student data, the cost difference 
between these two designs could be substantial. 

We emphasize that these findings may not apply to studies that do not use academic test scores 
as both the outcome and the assignment variable. Both the I&K bandwidth and the L&C 
adjustment depend on the relationship between the outcome and the assignment variable. In 
situations in which the relationship between the outcome and assignment variable is less linear, the 
bandwidth will be more narrow. In situations in which the relationship between the outcome and 
assignment variable is less smooth, the L&C adjustment will be more severe. 
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